ASSOCIATION OF

MATHEMATICS TEACHERS OF INDIA

Screening Test – Bhaskara Contest

(NMTC JUNIOR LEVEL-IX and X Grades)

2024-2025

Instructions:

- 1. Fill in the Response sheet with your Name, Class and the Institution through which you appear, in the specified places.
- 2. Diagrams are only Visual guides; they are not drawn to scale.
- 3. You may use separate sheets to do rough work.
- 4. Use of Electronic gadgets such as Calculator, Mobile Phone or Computer is not permitted.
- 5. Duration of Test: 10 am to 12 Noon (Two hours)
- 6. For each correct response you get 1 mark; for each incorrect response, you lose ½ mark.
- **1.** If $x^2 + x = 1$, then the value of $\frac{x^7 + 34}{x+2}$ is equal to a) 7 b) 1 c) 13 d) 17
- The angle between the hour hand and the minute hand of a clock at the time 9:38 pm is

a) 60º	b) 61º
c) 59º	d) 62º

- **3.** In the adjoining figure, AOB is a

diameter of the circle with centre O.

PC and PD are two tangents.

Then the measure of ∠EPD is _____

- a) 15° b) 10°
- c) 12° d) 20°

11. A sequence $\{a_n\}$, $n \ge 1$ with $a_1 = \frac{1}{2}$ and $a_n = \frac{a_{n-1}}{2na_{n-1}+1}$ is given. Then the value of $a_1 + a_2 + a_3 + \dots + a_{2024}$ is equal to

a) $\frac{1}{2024}$ b) $\frac{1}{2025}$ c) 2025 d) $\frac{1}{20}$	b)	$\frac{2024}{2025}$ c	2025	d) $\frac{1}{2025}$
---	----	-----------------------	------	---------------------

12. If α and β ($\alpha > \beta$) satisfy the equation $x^{1 + \log_{10} x} = 10x$ then the value of $\alpha + \frac{1}{\beta}$ is equal to

13. In the adjoining figure, four successively touching circles are placed in the interior of ∠AOB. The first (smallest) has a radius 7 *cm*. The third circle has a radius 28 *cm*. Then the radius of the largest circle (in *cm*) is

a) 42	b) 48

c) 52 d) 56

14. The coefficient of x in the equation x² + px + q = 0 was taken as 17, in place of 13 and its roots were found to be -2 and -15. If α, β are the roots of the original equation, then the equation whose roots are α/β and β/α is
a) 30x² + 109x + 30 = 0
b) 20x² - 107x + 20 = 0
c) 30x² - 109x + 30 = 0
d) 20x² + 107x + 20 = 0

15. If $(1+xy+x+y)^2 - (1-xy+x-y)^2 = ky(1+x)^2$, then k equals to a) 1 b) 2 c) 3 d) 4

Section B (Fill in the blanks)

16. When $x^{10} + 1$ is divided by $x^2 + 1$, we get

$$ax^{8} + bx^{7} + cx^{6} + dx^{5} + ex^{4} + fx^{3} + gx^{2} + hx + k$$

as quotient. Then the value of

 $a^{2024} + b^{2024} + c^{2024} + d^{2024} + e^{2024} + f^{2024} + g^{2024} + h^{2024} + k^{2024}$ is _____

17. The equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has 4 positive roots. Then a + b =_____

18. In the adjoining figure, BOC is the diameter of the semicircle with centre O.
DE is the tangent at D.
If AB = k(AE), then the numerical value of k is _____.

19. In triangle *ABC*, tanA : tanB : tanC = 1 : 2: 3.If $AC = p\sqrt{q}$ where *q* is Square free and god(*n*, *r*)

If $\frac{AC}{AB} = \frac{p\sqrt{q}}{r}$, where q is Square free and gcd(p,r) = 1 then the value of p+q+r is

- 20. Simon was given a number and asked to divide it by 120. He divided the number by 5, 6 and 7 and got 3, 2 and 2 as remainders respectively. The remainder when the number is divided by 120 is _____.
- 21. The greatest number that leaves the same remainder when it divides 30, 53 and 99 is _____.
- **22.** If $f(x+1) = x^2 3x + 2$ and if the roots of the equation f(x) = 0 are α and β , then the value of $\alpha^2 + \beta^2$ is _____.
- **23.** The maximum volume of a cylinder is cut from a cube of edge *a*. The volume of the remaining solid is ka^3 , where $k = \frac{p}{q}$, gcd(p,q)=1. Taking $\pi = \frac{22}{7}$, the value of p+q is ______.

24. If the irreducible quadratic factor of $5x^4 + 9x^3 - 2x^2 - 4x - 8$ is $ax^2 + bx + c$, then the value of $a^2 + b^2 - c^2$ is _____.

25. In the adjoining figure, POQ is the diameter of the semicircle with centre O. OABC is a square whose area is 36 cm^2 . If QD = $x \ cm$, the value of $x\sqrt{3}$ is _____.

1/2

26.	If $a = \sqrt{2024}, b = \sqrt{2025},$	the value of $2(ab)^{\frac{1}{2}}(a+b)$	$b^{-1}\left\{1+\frac{1}{4}\left(\sqrt{\frac{a}{b}}-1\right)\right\}$	$\sqrt{\frac{b}{a}}^2 \bigg\}^2$ is
-----	--	---	---	-------------------------------------

- **28.** The value of $\left(\frac{\sqrt{10}}{10}\right)^{(\log_{10}9)-2}$ is of the form $\frac{a}{b}$, where *a*, *b* are relatively prime to each other. Then a b is equal to ______.

30. a,b,c,d are real constants in a $f(x) = ax^{2025} + bx^{2023} + cx^{2021} + dx^{2019}$ and f(-4) = 18. Then the maximum value of $|f(4)| + |2\cos x|$ is _____.

End of Question Paper